Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We develop a linearized boundary control method for the inverse boundary value problem of determining a density in the acoustic wave equation. The objective is to reconstruct an unknown perturbation in a known background density from the linearized Neumann-to-Dirichlet map. A key ingredient in the derivation is a linearized Blagoves̆c̆enskiĭ’s identity with a free parameter. When the linearization is at a constant background density, we derive two reconstructive algorithms with stability estimates based on the boundary control method. When the linearization is at a non-constant background density, we establish an increasing stability estimate for the recovery of the density perturbation. The proposed reconstruction algorithms are implemented and validated with several numerical experiments to demonstrate the feasibility.more » « less
-
Abstract We consider the inverse fault friction problem of determining the friction coefficient in the Tresca friction model, which can be formulated as an inverse problem for differential inequalities. We show that the measurements of elastic waves during a rupture uniquely determine the friction coefficient at the rupture surface with explicit stability estimates.more » « less
-
Abstract We develop a linearized boundary control method for the inverse boundary value problem of determining a potential in the acoustic wave equation from the Neumann-to-Dirichlet map. When the linearization is at the zero potential, we derive a reconstruction formula based on the boundary control method and prove that it is of Lipschitz-type stability. When the linearization is at a nonzero potential, we prove that the problem is of Hölder-type stability in two and higher dimensions. The proposed reconstruction formula is implemented and evaluated using several numerical experiments to validate its feasibility.more » « less
An official website of the United States government
